Книга Знакомьтесь, информационные технологии онлайн - страница 11



Предел для компьютера

Извечные русские вопросы «Кто виноват?» и «Что делать?» в наше время задаются все реже. Вместо них звучат новые вопросы: «Что выгоднее?», «Что эффективнее?», «Кому необходимо?», «В чем перспектива?» И чем актуальнее тема, тем чаще звучат эти вопросы. Сегодня на развитие рынка наиболее активно влияют информационные технологии, сердцевина которых– компьютер. Потому вопросы, связанные с перспективой развития компьютерной техники, являются крайне актуальными, и ответы на них могут существенно повлиять на оценки и перспективы развития рынка высоких технологий и, следовательно, рынка в целом. При этом, естественно, необходимо найти ответ на один из основных вопросов…

Есть ли предел развития компьютера?

Для любого вида техники можно указать два предела, которые ограничивают его развитие: технологический и органолептический. Технологические пределы определяются фундаментальными законами физики. В частности, не может быть создан двигатель, КПД которого был бы больше 100 %. Органолептические пределы зависят от физиологических возможностей человека. Так, самолет, способный обеспечить ускорение в 100 g, принципиально может быть создан. Однако это ускорение приведет к гибели пилота и потому создание такого самолета бессмысленно. Аналогичные пределы можно указать и для компьютерной техники.

Технологический предел определяется скоростью света в вакууме, которая составляет 300 тысяч км/с. Иными словами, за одну секунду фотон перемещается на 0,3х109 м. Электрон в веществе не может двигаться с большей скоростью. При частоте работы процессора 1 ГГц за один такт фотон переместится на 300 мм. Расстояние, которое проходит импульс в современном процессоре, может измеряться десятками миллиметров (площадь кристалла процессора более 100 мм2). Этот импульс несет не только информационное содержание, но и энергию, используемую, в первую очередь, для переключения триггера. Как следствие, реальный электрический импульс должен иметь ненулевую длительность. Все эти ограничения приводят к тому, что реальная частота работы процессора вряд ли превысит 10 ГГц. Отдельный транзистор уже работает на значительно более высоких частотах, но без реального перемещения импульсов в пространстве.

Таким образом, можно говорить о физической границе частоты работы процессоров. Конечно, будет совершенствоваться структура процессора, расширяться кэш-память. Уже появились многопроцессорные кристаллы – IBM объявила о выпуске процессора Power 4, здесь на одном кристалле находятся два процессора. Тем самым сокращается длина пути электрона внутри процессора, а повышение производительности обеспечивается за счет параллельной обработки данных.

* * *

Технические ограничения в развитии компьютеров стали ясны.

Но необходимо поставить и другой вопрос.

Что человеку нужно?

Необходимо оценить и предел, связанный с возможностями восприятия человеком информации. Уже есть одна область цифровой техники, в которой такой предел достигнут. Это – цифровой звук. Достаточно давно звук представлен в 16-битном формате. И, несмотря на многократно возросшие технические возможности, не намечается перехода на 32-битный звук. Причина только одна – получаемый звук обеспечивает максимально возможное для человека качество звучания. Предел достигнут.

Однако с видеоинформацией ситуация существенно отличается. Самое высокое качество изображения обеспечивает сегодня монитор компьютера. Для качества выводимой информации принципиальное значение имеет размер минимального элемента (пиксела), из набора которых формируются все изображения, и частота восстановления изображения на экране. У лучших мониторов размер пиксела – 0,2 мм, что позволяет выводить на 17-дюймовый экран до 1200 строк. Размер пиксела определяет «гладкость» картинки – чем меньше точка, тем четче картинка. Но даже 1200 строк позволяют заметить на экране и строки, и точки в строке.

Второй важный параметр – частота восстановления (регенерации) экрана – связан с особенностью работы электроннолучевой трубки (ЭЛТ) – основа почти всех современных телевизоров и мониторов. На экране ЭЛТ с помощью управляемого пучка электронов обеспечивается свечение одного пиксела, который светится только то время, пока на него подаются электроны. Таким образом, картинка на экране формируется последовательным «зажиганием» отдельных пикселов. После этого пиксел некоторое время продолжает светиться (так называемое послесвечение), которое не может быть слишком долгим, иначе на экране будет сохраняться «след» от предыдущего изображения. Человеческий глаз устроен так, что картинка воспринимается неподвижной (без эффекта мелькания) в том случае, если частота повтора не ниже 16 Гц. Чем чаще, тем лучше. В современных телевизорах частота – 25 кадров в секунду (50 полукадров). В лучших телевизорах каждый кадр повторяется дважды, но находится на экране в течение вдвойне меньшего времени. Такой телевизор обеспечивает частоту 50 Гц (называется 100-герцовым, т. к. за одну секунду показывается 100 полукадров). Хорошие мониторы позволяют регенерировать экран 120–150 раз в секунду (современные мониторы работают с частотой регенерации не менее 70 Гц), а на экран выводится весь кадр.

Другой вариант мониторов – жидкокристаллические (ЖК) постепенно вытесняют ЭЛТ: они позволяют получить существенно иные потребительские качества. ЖК панели работают в отраженном свете или на просвет: после того, как жидкий кристалл, представляющий собой пиксел, становится прозрачным (или непрозрачным), он остается таким, пока не будет подана команда на смену его состояния. Потому для ЖК-мониторов нет необходимости увеличивать частоту регенерации. Важна только скорость смены (обновления) картинки на экране, чтобы все пикселы за минимальное время, порядка 0,01 секунды, приняли необходимое состояние. Вторая особенность ЖК – потенциальная возможность существенного уменьшения размера жидкого кристалла. В течение 90-х годов развитие техники и технологии ЭЛТ позволило уменьшить размер пиксела менее чем на 30 %: с 0,31 до 0,2 мм. Дальнейшие перспективы также не обещают их заметного уменьшения. Иное дело – интегральные технологии, применяемые при производстве ЖК-панелей. В 1999 году IBM объявила о начале производства ЖК-мониторов с пикселом размером 0,125 мм (200 пикселов на дюйм), т. е. практически в два раза меньше, чем у хороших ЭЛТ. И это не предел – размер точки может быть еще уменьшен. Фирма IBM начала выпускать монитор, основанный на технологии Roentgen, который сама IBM классифицирует как quad SXGA, имеет 5,2 млн. пикселов (2560x2048) и разрешение в 200 пикселов на дюйм. Такие параметры могут понадобиться, например, в медицине при исследовании оцифрованных рентгеновских снимков – отсюда и название монитора. Вслед за IBM и другие компании начали выпускать новые мониторы. Так, Toshiba анонсировала выпуск первого 10,4-дюймового дисплея, поддерживающего разрешение до 1600x1200. Размер пиксела составляет 0,132 мм, а плотность – 192 точки на дюйм. В матрице используется кристаллический кремний, что повышает скорость прохода электронов через транзисторы, и, как результат, повышаются яркость и четкость изображения. Новые мониторы не позволяют с расстояния 20 см увидеть отдельные точки на экране – картинка воспринимается как цельная – человеческий глаз не фиксирует отдельный пиксел. Отличие изображения на новом мониторе от стандартного ЭЛТ такое же, как отличие документов, напечатанных на лазерном и на матричном принтерах.

Можно считать, что и здесь достигается органолептический предел, и дальнейшее улучшение качества изображения не будет фиксироваться человеком.

* * *

Что и как может сообщить компьютер – понятно. Теперь надо донести до него информацию. И тут придется ответить на следующий вопрос.



Помоги Ридли!
Мы вкладываем душу в Ридли. Спасибо, что вы с нами! Расскажите о нас друзьям, чтобы они могли присоединиться к нашей дружной семье книголюбов.
Зарегистрируйтесь, и вы сможете:
Получать персональные рекомендации книг
Создать собственную виртуальную библиотеку
Следить за тем, что читают Ваши друзья
Данное действие доступно только для зарегистрированных пользователей Регистрация Войти на сайт