Книга Управление инвестициями. Диверсификация портфеля, риск и слежение за рынком онлайн - страница 4



Закон малых чисел

После изучения вероятностей, связанных с определенными последовательностями подбрасываний монеты, стоит рассмотреть несколько особенно важных вопросов о вероятности определенных сгруппированных результатов.

Рассмотрим пример. Петр и Дарья играли в бросание монеты каждый день в течение 1 000 последовательных дней, охватывающих большую часть трех прошедших лет. Пётр всегда ставил на орла; Дарья всегда ставила на решку. Их монета была симметричной, и у Пётра, и у Дарьи были одинаковые шансы на победу.

Пётр был впереди в любой взятый день, если число орлов превышало число решек. Дарья была впереди в любой взятый день, если число решек превышало число орлов. Что из нижеперечисленного является наиболее вероятным описанием их игры?

a. Со временем лидерство между Пётром и Дарьей менялось часто, поскольку проценты их выигрышей постоянно колебались между 48 и 52 процентами.

b. Один из игроков быстро вышел вперед – и остался впереди – в более чем 96 процентах бросков.

Как обсуждалось ранее, при любом броске симметричной монеты вероятность выпадения орла против решки равна точно 5050. Ясно, что чем больше бросков, тем больше уменьшается процентное отклонение от ожидаемого.

И все же даже в совершенно случайной игре типа бросания монеты появляются победители и проигравшие. Более того, как только победители оказываются впереди, маловероятно, что они оставят свои выигрышные позиции. Разговор об алогичном! Правильный ответ на поставленный выше вопрос – «Ь» – один из игроков быстро вышел вперед – и остался впереди – в более, чем 96 процентах бросков. Урок, который можно получить из этого примера, заключается в том, что даже если кажется, что один игрок обладает лучшим мастерством, это – иллюзия. Вас одурачили, заставив думать, что существует модель в последовательности бесспорно случайных результатов.

А вот еще вопрос. Вы и ваш друг бросаете монету один раз в день. Вы всегда ставите на орла; ваш друг всегда ставит на решку. На выигрыш какого числа бросков подряд вы и ваш друг имеете шанс вероятнее всего приблизительно через два месяца?

a. Одного.

b. Двух.

c. Трех.

d. Четырех.

e. Пяти.

Правильный ответ на этот вопрос – «е» – после 60 подбрасываний монеты, каждый из двух игроков имеет шанс вероятнее всего на выигрыш пяти бросков подряд.

Урок здесь заключается в том, что мы ожидаем, что случайные последовательности – такие, какие имели место при бросании монеты – будут чередоваться между орлами и решками; однако, по правде говоря, действительно случайные последовательности имеют гораздо больше повторений одного результата, чем наша интуиция заставляет нас думать. Серии из четырех, пяти или шести орлов или решек подряд приходят в столкновение с нашими ожиданиями чередования последовательностей орлов, затем решек, а затем опять орлов. И все же, в ряде только из 20 бросков монеты вероятность того, что выпадет четыре орла подряд, равна 50–50, вероятность пяти орлов подряд равна 25 процентам, а вероятность серии из шести орлов – 10 процентам.

Экономисты-бихевиористы называют нашу тенденцию видеть модели там, где они не существуют, «кластерной иллюзией». Важность этого понимания заключается в неизбежном заключении, что трудности, которые мы испытывает при точном распознавании случайных расположений событий, могут заставить нас поверить в те вещи, которые не являются истинными, а также считать, что что-то является систематическим, упорядоченным и 'реальным', в то время как в действительности это случайно, хаотично и иллюзорно. Мы предрасположены видеть порядок, модель и значение в мире; мы находим случайность, хаос и бессмысленность неудовлетворительными. Человеческая природа ненавидит недостаток предсказуемости и отсутствие значения».

Еще пример. Одна из следующих последовательностей является реальной последовательностью, которая была получена в результате вращения иглы на (симметричном) круге, показанном на Рис. 1. (К означает красный, а З – зеленый). Две другие последовательности – вымышлены. Обратите внимание, что вероятность того, что игла остановится на зеленом – четыре из шести (66,7 процента); вероятность того, что игла остановится на красном – два из шести (33,3 процента).

Какой из следующих рядов имеет самую высокую вероятность того, что он является реальной последовательностью?

a. КЗККК.

b. ЗКЗККК.

c. ЗККККК.

Обратите внимание, что последовательность КЗККК в варианте «а» вставлена в последовательность ЗКЗККК в варианте «Ь». Меняет ли это ваш ответ?

a. Да.

b. Нет.

Когда группе людей задают такой вопрос, примерно 65 процентов выбирают ответ «b» – ЗКЗККК. Кроме того, склонность людей выбирать «b» заметно не изменяется, когда указывается, что последовательность «а» вложена в последовательность «b».


Рис. 1 Генератор случайной последовательности


Для нахождения правильных ответов подумайте о том, что происходит, когда мы переходим от пяти вращений иглы к шести вращениям иглы. (Число вращений особенно важно, когда вы замечаете, что последовательность «а» вложена в последовательность «b»).

Когда мы исследовали относительную вероятность некоторых последовательностей бросания монеты, мы видели, что вероятность последовательного выпадения орлов равна вероятности выпадения орла на одном броске (1/2), умноженной на вероятность выпадения орла на следующем броске (1/2) и т. д. для каждого последовательного броска. Таким образом, независимо от того, какова вероятность того, что игла укажет на КЗККК на пяти последовательных вращениях, эта вероятность уменьшается до двух третей, если мы держим пари, что следующее вращение придется на З и до одной трети, если вы держите пари, что следующее вращение придется на К.

Как вы видели в примере с подбрасыванием монеты, причина, по которой люди выбирают последовательность «Ь» как последовательность с наибольшей вероятностью являющуюся реальной, заключается в том, что она кажется более сбалансированной или более типичной. Правильный ответ на вопрос, тем не менее, – «а» – К З К К К. Следующий вопрос, по существу, указывает, что последовательность «а» – которая имеет намного более высокую вероятность случайного появления – вложена в последовательность «Ь».

Эта иллюзия – еще один пример «закона малых чисел». Таким образом, хотя исчисление вероятностей твердо основывается на «законе больших чисел», интуиция большинства людей приводит к тому, что они ожидают нормальные результаты даже в очень коротких последовательностях.

Существуют важные причины, почему мы и наши предки в некоторых случаях знали, что достаточно одного раза. Можно с уверенностью сказать, что ни один из наших предков не употреблял в пищу ядовитые плоды. Когда наши предки видели, что кто-то заболел и умер после съедания какой-нибудь ягоды, это не побуждало их проводить слепое сравнение между 50 людьми, которые ели эту ягоду, и 50 людьми, которые ели плацебо. Одного раза вполне было достаточно.

Эта информация, наряду со знанием тенденции видеть порядок там, где его нет, будет неоценима, когда мы будем исследовать, как инвесторы приписывают упорядоченность последовательностям изменений курсов акций в тех случаях, когда ее нет.



Помоги Ридли!
Мы вкладываем душу в Ридли. Спасибо, что вы с нами! Расскажите о нас друзьям, чтобы они могли присоединиться к нашей дружной семье книголюбов.
Зарегистрируйтесь, и вы сможете:
Получать персональные рекомендации книг
Создать собственную виртуальную библиотеку
Следить за тем, что читают Ваши друзья
Данное действие доступно только для зарегистрированных пользователей Регистрация Войти на сайт